A Study on Clustering Method by Self-Organizing Map and Information Criteria

نویسندگان

  • Satoru Kato
  • Tadashi Horiuchi
  • Yoshio Itoh
چکیده

In this paper, we propose a clustering method by SOM and information criteria. In this method, initial cluster-candidates are derived by SOM, and then these candidates are merged appropriately based on information criterion such as BIC or AIC (Akaike Information Criterion). Through the clustering experiments for the artificial datasets and UCI Machine Learning Repository’s datasets, we confirm that our proposed method can extract clusters more accurately and stably than the SOMonly method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Improving Lifetime of Strategic Information Network in Oil Supply Chain

Today, information networks play an important role in supply chain management. Therefore, in this article, clustering-based routing protocols, which are one of the most important ways to reduce energy consumption in wireless sensor networks, are used to optimize the supply chain informational cloud network. Accordingly, first, a clustering protocol is presented using self-organizing map neu...

متن کامل

Improving Lifetime of Strategic Information Network in Oil Supply Chain

Today, information networks play an important role in supply chain management. Therefore, in this article, clustering-based routing protocols, which are one of the most important ways to reduce energy consumption in wireless sensor networks, are used to optimize the supply chain informational cloud network. Accordingly, first, a clustering protocol is presented using self-organizing map neu...

متن کامل

Application of a Self-Organizing Map for Clustering the Groundwater Quality in Kerman Province and Assessment its Suitability for Drinking and Irrigation Purposes

Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009